
Dense, Interlocking-Free and Scalable Spectral Packing of Generic 3D
Objects
QIAODONG CUI, Inkbit, USA
VICTOR RONG,Massachusetts Institute of Technology, USA
DESAI CHEN, Inkbit, USA
WOJCIECH MATUSIK,MIT CSAIL, Inkbit, USA

Fig. 1. Left: We select over 6000 objects from Thingi10K as our benchmark, which consists of many challenging geometries.Middle: We densely pack the
benchmark into a cuboid with a packing density of 35.77%. The packing is free of interlocking. Right: An in-focused view highlighting densely packed objects.

Packing 3D objects into a known container is a very common task in many
industries such as packaging, transportation, and manufacturing. This im-
portant problem is known to be NP-hard and even approximate solutions
are challenging. This is due to the difficulty of handling interactions between
objects with arbitrary 3D geometries and a vast combinatorial search space.
Moreover, the packing must be interlocking-free for real-world applications.
In this work, we first introduce a novel packing algorithm to search for
placement locations given an object. Our method leverages a discrete voxel
representation. We formulate collisions between objects as correlations of
functions computed efficiently using Fast Fourier Transform (FFT). To de-
termine the best placements, we utilize a novel cost function, which is also
computed efficiently using FFT. Finally, we show how interlocking detec-
tion and correction can be addressed in the same framework resulting in

Authors’ addresses: Qiaodong Cui, qcui@inkbit3d.com, Inkbit, Medford, USA; Victor
Rong, Massachusetts Institute of Technology, USA, vrong@mit.edu; Desai Chen, Inkbit,
USA, dchen@inkbit3d.com; Wojciech Matusik, MIT CSAIL, Inkbit, USA, wojciech@
csail.mit.edu,wojciech@inkbit3d.com.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
© 2023 Copyright held by the owner/author(s).
0730-0301/2023/8-ART1
https://doi.org/10.1145/3592126

interlocking-free packing. We propose a challenging benchmark with thou-
sands of 3D objects to evaluate our algorithm. Our method demonstrates
state-of-the-art performance on the benchmark when compared to existing
methods in both density and speed.

CCS Concepts: • Computing methodologies→ Shape analysis; Volumet-
ric models; Collision detection.

Additional Key Words and Phrases: 3D Packing

ACM Reference Format:
Qiaodong Cui, Victor Rong, Desai Chen, and Wojciech Matusik. 2023. Dense,
Interlocking-Free and Scalable Spectral Packing of Generic 3D Objects. ACM
Trans. Graph. 42, 4, Article 1 (August 2023), 14 pages. https://doi.org/10.1145/
3592126

1 INTRODUCTION
The packing problem is an optimization problem aiming to best
arrange a set of objects into a container. It has been studied for
hundreds of years due to its practical importance. For example, the
famous Kepler conjecture was inspired by tightly stacking cannon-
balls in the 17th century. Since then, packing of regular objects
such as boxes [Martello et al. 2000], ellipses [Stoyan et al. 2016],
and tetrahedra [Chen et al. 2010] has been extensively studied, as
well as packing of irregular 2D objects [Leao et al. 2020]. However,
packing of generic 3D objects has received less attention despite

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

https://doi.org/10.1145/3592126
https://doi.org/10.1145/3592126
https://doi.org/10.1145/3592126

1:2 • Cui et al.

its practical importance, such as in robotic packaging [Wang and
Hauser 2019], 3D printing [Chen et al. 2015; Yao et al. 2015], trans-
portation [Egeblad et al. 2010], and layout and pattern generation
[Fanni et al. 2022; Reinert et al. 2013].
We focus on the problem of maximum density packing given

a fixed container and a list of 3D objects. Packing density is the
total volume of all packed objects divided by container volume. In
this scenario, there may be more objects than what can fit into a
single container. We later extend our base algorithm to multi-tray
packing where the goal is to pack all objects using as few containers
as possible. We also require the packing to be interlocking-free: parts
must be physically disassembled without breaking or deforming
them. The disassembly is allowed to move a part or a group of parts
through one or more steps along possibly different directions. We
gear our algorithm toward 3D printing [Sitthi-Amorn et al. 2015;
Vanek et al. 2014]. In this case, the container is virtual and only
serves to specify the printing volume. Objects can be disassembled
in any direction after printing. This is different from packing in
robotics such as Hu et al. [2020], where the objects are inserted
through a physical opening.
The first challenge of packing generic 3D objects is addressing

the complicated collision constraints that stem from arbitrary ge-
ometries. Many algorithms have been proposed previously [Lamas-
Fernandez et al. 2022; Liu et al. 2015; Ma et al. 2018; Romanova
et al. 2018], but it remains difficult to scale these algorithms to pack
more than a few dozen complex objects. Inspired by works in pro-
tein docking [Katchalski-Katzir et al. 1992], we formulate collision
constraints as correlations between discretized objects, which are
computed in the spectral domain with FFT. This is efficient because
a single convolution using FFT computes collision detection results
for an object at all voxel locations. This algorithm is scalable to
thousands of complex 3D objects. We then introduce a proximity
metric at every voxel location, also computed using FFT. The result-
ing algorithm is extremely efficient at finding object placements for
tight packing.

Another challenge is to avoid interlocking because objects must
follow a non-colliding path when they are assembled or disassem-
bled. Checking for disassembly is known to be difficult [Goldwasser
et al. 1996]. We show that the same spectral framework comes to
the rescue yet again, allowing interlocks to be both detected and
resolved. The key insight is that interlocking-free locations can be
computed efficiently with a flood-fill on the collision metric.

Expanding on the base algorithm, we employ a continuous search
to refine placements at sub-voxel locations. We also propose a ray
casting disassemblymethod to efficiently handle easy-to-disassemble
parts. Lastly, we extend the algorithm to multi-tray packing. To
evaluate our algorithm, we generate a set of diverse benchmarks
consisting of thousands of generic 3D objects. In summary, our
contributions are:

• An efficient placement search based on FFT
• A disassembly algorithm in the same unified framework
• A continuous placement refinement method
• A broad-phase ray casting disassembly
• An extension to multi-tray packing
• A set of challenging benchmarks for future evaluations

2 RELATED WORK
Packing problems have been studied many times in the context
of computational geometry and optimization [Wang et al. 2021].
Previous approaches often use expensive geometric queries [Hang
2015; Liu et al. 2015; Ma et al. 2018] to enforce collision constraints.
Our algorithm only uses a minimal amount of geometry processing
by working with a voxel representation computed at a rate of 10ms
per million triangles on a GPU [Schwarz and Seidel 2010]. Our FFT-
based collision metric takes 3ms to identify all collisions on a grid
with 24 million voxels.

Our algorithm is inspired by previous work in molecular biol-
ogy. Katchalski-Katzir et al. [1992] proposed an efficient FFT-based
algorithm to evaluate the quality of all ligand-protein docking con-
figurations for a given orientation. More recent works have modeled
proteins’ shapes with spherical harmonics to include rotations [Pad-
horny et al. 2016; Ritchie and Kemp 2000; Ritchie and Venkatraman
2010]. Compared to these works, we pack hundreds of objects rather
than two proteins and ensure the interlocking-free constraint. In our
setting, it is difficult to approximate man-made CAD models using
spherical harmonics. This is because CAD models usually contain
sharp edges and corners, requiring many high-order spherical har-
monics bases to accurately resolve. Therefore, we choose to perform
3D Cartesian FFTs for higher speed and accuracy, while limiting the
number of possible rotations. We briefly summarize other lines of
work on packing in the following paragraphs.

No-fit Polygon. Ano-fit polygon (NFP, also known as aMinkowski
difference) is a compact representation for the set of positions that
would cause collisions between two polygons [Art Jr 1966]. In 2D,
NFPs are computed by sliding polygon A along the edges of poly-
gon B and tracing the center of polygon A, which requires careful
treatment of edge cases [Burke et al. 2007]. Exact NFPs in 3D do
not scale well even for convex polyhedra as the algorithms have a
quadratic complexity in the number of vertices.

Voxel-based Methods. Vanek et al. [2014] and Chen et al. [2015]
demonstrated a method to decompose and pack objects for 3D print-
ing. Lamas-Fernandez et al. [2022] proposed no-fit voxels (NFV) as
a 3D analogy to NFPs. NFVs are computed in the spatial domain by
sliding one object across all voxel locations and checking for any
overlapping voxels. The authors used bounding boxes to accelerate
detection of non-overlapping positions. Our FFT-based collision
metric serves the same function as NFVs but the computation is
much more efficient with linearithmic runtime in the number of
voxels.

Mathematical Models. Packing can be modeled as a nonlinear
optimization problem [Pankratov et al. 2020; Romanova et al. 2018].
Collision constraints are encoded using phi-functions between pairs
of objects, which can be viewed as an analytical version of NFPs for
3D objects. For triangular meshes, phi-functions are derived from
pairwise distance functions between vertices and triangles [Chernov
et al. 2010]. Thus the complexity grows quadratically. This limits the
results to a small number of simple objects (typically fewer than
100). We refer the readers to Leao et al. [2020] for a more in-depth
review of mathematical formulations for packing problems.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Dense, Interlocking-Free and Scalable Spectral Packing of Generic 3D Objects • 1:3

Learning to Pack. Goyal and Deng [2020] used deep reinforce-
ment learning (DRL) to train a neural network for picking the next
shape to pack. DRL has been used to learn selection and placement
policies for box packing with robot arms [Hu et al. 2020; Yang et al.
2021; Zhao et al. 2021]. To use trained policies, a placement step is
still needed to compute the packed configuration, which is often
performed using rigid body simulation software [Coumans and Bai
2021; Lan et al. 2022]. Our work primarily focuses on improving
placement speed and preventing interlock rather than designing
policies for selecting the next shape to pack.

Disassembly Planning. Song et al. [2012] demonstrated an algo-
rithm to design interlocking puzzles using voxels. Wang et al. [2018]
used Directional Blocking Graphs to efficiently construct puzzles.
We use the same representation to accelerate disassembly. Zhang
et al. [2020] proposed a path planning algorithm that considers both
translation and rotation. Chen et al. [2022] presented an algorithm
for high-level puzzles where a piece can only be removed after mov-
ing several pieces. Tian et al. [2022] used rigid body simulation to
disassemble mechanical assemblies. These works focus on tightly
coupled assemblies which necessitate complicated paths with rota-
tions. Our packed assemblies are usually loosely coupled but consist
of hundreds of objects. Thus we develop disassembly algorithms
that are more suitable to packing. We also only allow translations
in the disassembly process to keep it simple for users.

Packing Benchmarks. Packing benchmarks are rare [Araújo et al.
2019]. Goyal and Deng [2020] constructed a dataset with a large
number of packs, however, each pack only contains an average of
23 objects. Our benchmark constructed fromThingi10k [Zhou and
Jacobson 2016] contains hundreds of diverse shapes per pack.

3 SCALABLE SPECTRAL PACKING
We present our packing algorithm in two parts. We start with the
placement step which is performed efficiently in the spectral domain.
Then, we describe a greedy algorithm that packs objects densely
and without collision. Interlocking prevention is addressed in §4.

The placement search step attempts to find a position for a given
object � in the container (tray), such that � is fully contained in the
tray and not colliding with the set of existing objects Ω. Efficient
collision detection is critical for this step. To effectively search in
the placement space, we perform the search using a discrete step
followed by a continuous refinement step.

3.1 Discrete Placement Search with FFT
We begin the discrete placement search by formulating collision de-
tection as a correlation between voxel grids of � and Ω [Katchalski-
Katzir et al. 1992]. We refer to the result of the correlation computa-
tion as the collision metric. For = voxels, computing the collision
metric at every voxel location by brute force is impractical at$ (=2)
complexity. Instead, we compute the collision metric in spectral
domain with FFT spending only $ (= log=) time. For example, the
brute force method on a 240 × 123 × 100 grid takes 9.4 seconds on
average, while FFT only takes 0.003 seconds, which is three orders
of magnitude faster.

Next, we propose a proximity metric to score the collision-free
placements by how well � fits within Ω. Here a better fit means a
smaller gap between � and Ω. The proximity metric is also formu-
lated as a correlation. Lastly, to encourage a lower packing height,
a simple height penalization term is added to the score.

Collision Metric. We represent an object � ⊂ R3 and a set of
existing objects Ω ⊂ R3 with indicator functions B� (x) and BΩ (x),
where x ∈ R3 is a point in 3D space:

B� (x) =
{
1 if x ∈ �,
0 if x ∉ �.

BΩ (x) =
{
1 if x ∈ Ω,
0 if x ∉ Ω.

(1)

The indicator functions over the voxel grid B� and BΩ are computed
using a conservative voxelization [Schwarz and Seidel 2010]. Then,
we compute the collision metric Z�,Ω (q), q ∈ R3 as a correlation
between B� (x) and BΩ (x) for each displacement q of �:

Z�,Ω (q) =
∫

B� (x)BΩ (x − q)3x. (2)

The collision metric Z�,Ω (q) is non-negative. Zero values of Z�,Ω (q)
indicate collision-free positions for the object�while positive values
correspond to colliding positions for �. A description of computing
the collision metric Z�,Ω is shown in Fig. 2.

Fig. 2. Computing collision metric Z�,Ω using Fast Fourier Transform (FFT).
Existing objects including the container have already been voxelized (top
left). The new mesh is voxelized and padded to the background grid size
(bottom left). To compute the collision metric, we assign 0 to empty voxels
and 1 to occupied voxels. We then perform FFT on both grids (center). We
show the magnitude of the complex Fourier coefficients where the low
frequency values are grouped in the center. We then perform inverse FFT
on the pointwise product of the Fourier coefficients (right). The final output
is a per-voxel overlap count where zero values indicate collision-free offsets
for the new object.

ProximityMetric. To define the proximitymetric, we first compute
an unsigned distance function of the set of objects Ω:

qΩ (x) =
{
3 (x,Ω) if BΩ (x) = 0,

0 if BΩ (x) = 1,
(3)

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:4 • Cui et al.

where 3 (x,Ω) = min∀p∈mΩ |x − p| is the unsigned distance from
point x to Ω. Then, the proximity metric is defined as:

d�,Ω (q) =
∫

B� (x)qΩ (x − q)3x. (4)

When object � moves closer to Ω, proximity metric d�,Ω becomes
smaller. Thus, the proximity metric d�,Ω (q) measures how closely
the object � fits into the set of objects Ω at the location q.

Height Penalization. Amajor application of our algorithm is raster-
based 3D printing, which prints in a layer by layer fashion [Sitthi-
Amorn et al. 2015]. Because each layer takes a constant amount of
time, the print time is proportional to the height of the packing. To
minimize print time, we add a height penalization term:

ℎ(t) = ?q3I , (5)

where qI is the I coordinate of the placement normalized to the
range [0, 1], and ? is a non-negative parameter. We choose the cubic
exponent to discourage placement at a taller height. The choice for
? is discussed in §A.2.

We add the proximity metric and height penalization into a single
cost function f�,Ω (q) = d�,Ω (q) +ℎ(q) and search for the collision-
free location q∗ with minimum cost:

q∗ = argmin
q
{f�,Ω (q) | Z�,Ω (q) = 0}. (6)

Since Z�,Ω and f�,Ω are efficiently computed for all voxels, the opti-
mization can be solved by iterating over all voxels whose collision
metric is zero and finding the global minimum.

Orientations Sampling. To obtain a better placement, we rotate
the object using a list of orientations. For each orientation r9 , we
find the best translation q9 and the minimal cost 2 9 = f�,Ω (q9). We
then select the orientation with the minimum cost. Orientations can
be sampled by uniformly dividing Euler angles or using subdivisions
of an icosahedron. The entire discrete placement search is described
in Algorithm 1 with more implementation details in §A.1.

3.2 Continuous Placement Refinements
The discrete placement search is performed on voxel positions,
where the minimal spacing is determined by the voxel size 3G . This
leaves unnecessary spacing between objects, as shown on the left of
Fig. 3. However, reducing the voxel size 3G is expensive as the size
of the voxel grid scales cubically. To address this issue, we apply a
continuous refinement step to reduce the spacing between objects.
In this step, objects are represented by their original geometries for
accuracy. We then progressively update the placement position q
of the object � without colliding with Ω, until it is within a desired
margin from Ω.

Specifically, we implement the continuous refinement as a binary
search along a direction. At each binary search step, a collision
detection is performed between � and Ω. To accelerate, we use
axis-aligned bounding box trees [Jacobson et al. 2018]. We then
use the separation axis theorem [Ericson 2004] to detect if two
triangles are within the margin. The movement direction is the
discrete gradient ∇f�,Ω at voxel q. The maximum movement range
is 23G . In practice, we apply continuous refinement three times along
G,~, I axis separately. For each axis, the corresponding component of

Algorithm 1 Placement Search with FFT

1: function FFTSearchPlacement(�,Ω,<, l, 3G)
2: Input: An object� to be placed, existing set of placed objects

Ω, the number of orientations to search <, tray dimension
l = (;G , ;~, ;I) along the G,~, I axis, voxel size 3G

3: Output: Placement successful (True or False), Placement
position q, rotation r

4: BΩ ← Voxelize(Ω, l, 3G)
5: B̃Ω ← FFT(BΩ) ⊲ BΩ in spectral domain
6: qΩ ← ComputeDistance(BΩ)
7: q̃Ω ← FFT(qΩ) ⊲ qΩ in spectral domain
8: 9 ← 1, 2 ←∞, q← 0, r← I
9: while 9 ≤ < do ⊲ Search over orientations
10: r9 ← SampleEulerAngle(9) ⊲ Sample orientations
11: � 9 ← Rotate(�, r9)
12: B� 9

← Voxelize(� 9 , l, 3G)
13: B̃� 9

← FFT(B� 9
)

14: Z� 9 ,Ω ← IFFT(B̃� 9
· B̃Ω) ⊲ Collision metric

15: d� 9 ,Ω ← IFFT(B̃� 9
· q̃Ω) ⊲ Proximity metric

16: f� 9 ,Ω (x) ← d� 9 ,Ω (x) + ℎ(x) ⊲ Add height penalty
17: X← {x8 | Z� 9 ,Ω (x8) = 0} ⊲ Non-colliding locations
18: if X ≠ ∅ then
19: {2 9 , x9 } ← minf� 9 ,Ω (x), x ∈ X ⊲ Find minimum
20: if 2 9 < 2 then
21: 2 ← 2 9 , q← x9 , r← r9
22: end if
23: end if
24: 9 ← 9 + 1
25: end while
26: if 2 < ∞ then
27: Return {True, q, r} ⊲ Successful placement
28: else
29: Return {False, 0, I} ⊲ Unsuccessful placement
30: end if
31: end function

Fig. 3. Left: Packing cubes with discrete placement search using voxel size
3G = 2mm leaves undesirable spacing. Right: With the addition of contin-
uous placement refinements, the spacing between cubes can be reduced to
a user-specified value, in this case 0.2mm.

∇f�,Ω determines the movement direction. In practice, this process
is effective because many objects are axis aligned.

3.3 Packing Objects Greedily
We use a greedy strategy that orders all objects from largest to
smallest according to bounding box volumes. The objects are then

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Dense, Interlocking-Free and Scalable Spectral Packing of Generic 3D Objects • 1:5

sequentially placed into the container with the placement search.
This is described in Algorithm 2. This heuristic is inspired by the
commonly used first-fit-decreasing algorithm [Johnson 1973]. While
a combinatorial search over object ordering may yield better results
(§B.3), we leave it as future work due to the exponential search
space. We extend the greedy strategy to multi-tray packing shown
in §A.3. The complexity of the packing algorithm described thus
far is $ (#<(= log=)), where # is the number of objects, = is the
number of voxels, and< is the number of rotations.

Algorithm 2 Greedy Packing with Placement Search

1: function GreedyPackObjects(A,<, l, 3G)
2: Input: A list of objects A, the number of orientations to

search<, tray dimension l, voxel size 3G .
3: Output: A list of successfully packed objects P. A list of

translations Q and rotations R of objects in P. A list of unsuc-
cessfully packed objects U.

4: P← ∅,Q← ∅,R← ∅,U← ∅, 8 ← 1
5: A← Sort(A) ⊲ Sort all objects from largest to smallest
6: while 8 ≤ A.size() do
7: {1, q8 , r8 } ← FFTSearchPlacement(A8 , P,<, l, 3G)
8: if 1 then ⊲ Placement successful
9: P.add(A8)
10: Q.add(q8)
11: R.add(r8)
12: else ⊲ Placement unsuccessful
13: U.add(A8)
14: end if
15: 8 ← 8 + 1
16: end while
17: Return {P,Q,R,U};
18: end function

4 INTERLOCKING-FREE PACKING WITH DISASSEMBLY
The algorithm described in §3 may produce interlocking. To address
this, we introduce a novel flood-fill disassembly algorithm to detect
any interlocks. Once interlocks are detected, one or more objects are
removed from the packing until all interlocks are resolved. Next, we
derive a placement method based on flood-fill disassembly, which is
used to reinsert removed objects into the packing without introduc-
ing new interlocks. Finally, to improve the efficiency of disassembly,
we propose a fast ray-casting disassembly.

4.1 Flood-Fill Disassembly
The collision metric Z�,Ω already contains enough information for
the disassembly. Specifically, an object � can physically move from
a start location q to another location q′ if there is a path connecting
them such that Z�,Ω is zero along the path. Thus, given a set of
locations X where � is considered disassembled, the disassembly
check can be performed as a flood-fill on the voxel grid Z�,Ω , which
is described in Algorithm 3. Fig. 4 shows examples of determining
reachable spaces using flood-fill.

An object is fully disassembled when its bounding box is outside
of the tray. Therefore, at any feasible starting location x ∈ X, the

Fig. 4. Flood-fill for computing all reachable positions. The top row shows
three cases of rectangular boxes. The bottom row shows the collision metrics
ZΩ,� and flood-filled labels indicating valid packing positions for the object
�. The boundary voxels (dark blue) are initialized to 0 indicating that the
object is completely outside of the assembly. The light blue voxels are
reachable positions computed by flood-fill. In the first column, the box is
water-tight so nothing can enter or exit. In the middle column, the opening
is too narrow to fit the object �. In the last case, there is a perfect opening
for the object to enter.

Algorithm 3 Disassembly of One Object with Flood-Fill

1: function FloodFillDisassembly(Z�,Ω, q,X)
2: Input: Collision metric Z�,Ω , placement location q, a set of

feasible starting locations X.
3: Output: A Boolean indicates whether � can be physically

disassembled from the placement location q.
4: Z�,Ω (x8) ← 2, ∀x8 ∈ {x8 | Z� 9 ,Ω (x8) ≠ 0} ⊲ Colliding voxel
5: Z�,Ω (x8) ← 1, ∀x8 ∈ {x8 | Z� 9 ,Ω (x8) = 0}
6: Z�,Ω (x8) ← 0, ∀x8 ∈ X ⊲ Feasible voxel
7: while not converged do
8: Z�,Ω (y) ← 0 If Z�,Ω (y) = 1 and ∃y8 , Z�,Ω (y8) = 0, and

y8 is a neighbor of y ⊲ Flood-fill 1 with 0
9: end while
10: if Z�,Ω (q) = 0 then ⊲ q is feasible
11: Return True;
12: else
13: Return False;
14: end if
15: end function

bounding box of � should not intersect Ω. This can be achieved by
zero-padding the voxel grid Z� 9 ,Ω with the size of the object’s voxel
grid B� . Then, the feasible starting locations X are the voxels on
the six boundary faces of the grid Z� 9 ,Ω . Since the size of grid B�
depends on the object’s geometry and orientation, the grid Z� 9 ,Ω

must be dynamically resized. This is usually 1.2-4x slower than the
metric computation in the FFT placement algorithm, depending on
the size of the object.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:6 • Cui et al.

We apply the flood-fill check to disassemble a packed tray.The dis-
assembly algorithm for the packed tray is described in Algorithm 4
and visualized in Fig. 5. Specifically, we examine each object sequen-
tially and disassemble objects that pass the check. This procedure
is repeated until either all objects are disassembled, or until the
remaining objects cannot be disassembled due to interlocking. If the
remaining objects are interlocked, we remove a subset of them from
the packed tray, and add them to the list of unsuccessfully packed
objects. The SelectRemove step of Algorithm 4 is used to choose
a subset of parts to explicitly remove. We first compute the total
bounding volume of A< . Then, starting from the smallest object, we
remove objects until the bounding volume of all removed objects
exceeds 10% of the total bounding volume of A< .
Our flood-fill disassembly favors simpler disassembly plans by

only allowing translations. This is not a drawback but an important
aspect for our applications. For example, this makes it easier to
physically disassemble a 3D printed tray. Algorithm 4 is very con-
servative in removing objects to preserve packing density. This may
result in a quadratic number of flood-fill operations in the worst
case. To address this, we developed a ray-casting-based disassembly
(§4.4) to quickly disassemble a large fraction of the objects first.Then
Algorithm 4 is used to examine the remaining objects. In summary,
we find the flood-fill disassembly strikes a good balance between
the packing density and the disassembly complexity.

Algorithm 4 Disassembly for a List of Objects

1: function DisassemblyObjectsFloodFill(A? ,Q,R,�, 3G)
2: Input: A list of packed objects A? , the list of translations Q,

the list of rotations R, tray dimension�, voxel resolution 3G
3: Output: A list of removed objects AA to resolve interlocking.
4: AA ← ∅ ⊲ List of removed objects
5: A< ← A? ⊲ List of remaining objects
6: while A< ≠ ∅ do
7: A3 ← ∅ ⊲ List of disassembled objects
8: for �8 in A< do
9: Ω ← A< −�8

10: � 9 ← Rotate(�8 ,R[�8])
11: Z� 9 ,Ω ← ComputeMetric(Ω, � 9 ,�, 3G)
12: X← ExtractBoundary(Z� 9 ,Ω)
13: if FloodFillDisassembly(Z� 9 ,Ω,Q[�8],X) then
14: A3 .add(�8)
15: end if
16: end for
17: if A3 = ∅ then ⊲ Everything is interlocked
18: Atmp ← SelectRemove(A<)
19: AA .add(Atmp)
20: A< .remove(Atmp)
21: else
22: A< .remove(A3)
23: end if
24: end while
25: Return AA

26: end function

4.2 Flood-Fill Disassembly with Refinements
Algorithm 3 only checks if an object � can be disassembled from
discrete voxel locations. With continuous refinement, the placement
q may not lie exactly on a voxel. Moreover, � may share voxels
with other objects so that the initial position would be marked as
colliding. To address this, we snap � to a voxel once flood-fill has
found all reachable grid locations. In particular, we compute the
distance of every feasible grid location (Z� 9 ,Ω (x) = 0) to q, and select
the top ten candidates closest to q. For each candidate location x2 ,
we define a snapping vector y = x2−q.Then, we check the path from
q to x2 by building a swept triangle mesh of object � along y. Using
AABB trees and the separating axis theorem, we can determine if
the swept mesh collides with any other remaining objects [Ericson
2004]. The object is successfully disassembled if it snaps to any of
the candidates.

4.3 Interlocking-Free Placement
The flood-fill disassembly check can be easily reformulated to en-
force interlocking-free placement. This can be achieved by perform-
ing flood-fill on the collision metric before searching for placements
in Algorithm 1. Voxels marked as zero on the collision metric will be
physically feasible. As a result, any placements produced algorithm
produces will not cause interlocking.

Interlocking-free placement can be used to avoid the disassembly
step, but it is slower as we need to perform flood-fill for every object
orientation. This strategy also lowers packing density in most cases,
because flood-fill prevents objects from being placed inside cavities
of the packing, as shown in §5.2. Thus we prefer to only use the
interlocking-free placement for reinsertion.

4.4 Ray-Casting Disassembly
We observe a large fraction of objects can be removed following a
straight line in our assemblies. Inspired by this, we develop a fast
ray-casting-based disassembly. First, we cast rays on the assemblies
along a given direction.Then, we extract the precedence information
along each ray, which can be encoded as directed edges on a graph
where nodes represent objects. The resulting graph is also referred
to as a Directional Blocking Graph (DBG) [Wang et al. 2018; Wilson
and Latombe 1994]. We use a graph analysis tool similar to Wang
et al. [2018] for disassembly.
Specifically, after obtaining the DBG along a ray direction, we

extract strongly connected components (SCCs) from the graph. The
SCCs represent a group of objects that cannot be separated along
that ray direction. However, different SCCs can be separated follow-
ing a topological order on the graph. We then remove any SCCs with
only one node.We repeat this process 2 times along each G,~, I direc-
tion, which usually removes a large fraction of objects with no inter-
locking.The algorithm is described in Fig. 6.The remaining SCCs can
still potentially be disassembled. Therefore, we use flood-fill disas-
sembly in §4.1 to examine each SSC.This greatly reduces the number
of input objects for the flood-fill disassembly and improves its effi-
ciency. If the largest SCC contains (objects, where (� # , then the
complexity of the disassembly step is$ ((# (= log=)). The total time
complexity of placement and disassembly is $ ((< + ()# (= log=)).
The number of voxels = scales cubically with the inverse voxel size

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Dense, Interlocking-Free and Scalable Spectral Packing of Generic 3D Objects • 1:7

Fig. 5. Flood-fill disassembly. From left to right: The algorithm checks if each object can be physically disassembled. An object may be removed if no other
objects can be disassembled. For example, the ring object marked with red is removed in the second figure. Once the interlocking is resolved, the algorithm
iterates over the remaining objects, and removes them following a physically valid path.

1/3G . We evenly sample Euler angles along three axes to produce
rotations. Thus,< scales cubically with the angular resolution. For
best results, one should choose the finest 3G within the memory
limit and sample rotations every 90◦, as in appendix B.2.

5 RESULTS
We first describe the benchmarks used throughout this section. Next,
we show results using different interlocking prevention strategies
and continuous refinement. Then we explore different algorithm
parameter choices. We also demonstrate the result on multi-tray
packing. Lastly, we compare our algorithm against a variety of
commercial software and other techniques.
All of our experiments are run on a desktop equipped with an

RTX3090Ti GPU and an i7-13700K CPU. We implemented our algo-
rithm in C++ and CUDA programming language [NVIDIA 2022a].
We use the cuFFT library [NVIDIA 2022b] to perform FFT on the
GPU. Unless otherwise specified, all experiments use a tray of di-
mension 480mm × 245mm × 200mm, which is the maximum print
volume of our 3D printer.

5.1 Benchmark
To evaluate our algorithm comprehensively, we produce a large
benchmark fromThingi10K [Zhou and Jacobson 2016]. The exact
details are discussed in §B.1. Additionally, we produced three other
benchmarks for evaluation. The first benchmark, pieces, contains
many medium and small objects, many of which are axis-aligned.
The second dataset, mixtures, contains a mixture of large and small
objects selected from Thingi10K. Both of the benchmarks represent
typical packing scenarios. The third dataset, locks, contains many
ring-like geometries to test the robustness of the algorithm against
interlocking. A preview of the benchmarks, as well as packing using
our algorithm, is shown in Fig. 7 and Fig. 8. We also 3D printed the
packed mixtures dataset as shown in Fig. 9.

5.2 Different Strategies to Avoid Interlocking
We compare two strategies for avoiding interlocking, namely flood-
fill at the placement stage versus disassembly as a post-processing
step. The result is shown in Table 1. Without checking interlocking,
we may achieve a higher packing density, but interlocking can easily
appear as shown in Fig. 10. Generally, the two-phase post-processing
disassembly packs objects more densely and in less time. Therefore,
we choose it as the default method.

Enabling flood-fill at the placement stage requires more steps as
shown in §4.3, which makes the overall algorithm slower. This is

shown in the pieces and mixtures dataset of Table 1. An exception
is the locks benchmark, where the flood-fill placement is faster. For
this benchmark, the default placement algorithm usually produces
large interlocking assemblies such that the ray-casting disassembly
is less effective. The more expensive flood-fill disassembly has to
be used to examine large interlocking assemblies, which becomes
slower as the number of objects in the assembly grows.

Table 1. We compare the packing densities and timings of our packing
algorithm using different disassembly methods. “No” means using no dis-
assembly, and therefore the packing may contain interlocking. “Flood-Fill”
uses the interlocking-free placement in §4.3 for every orientation at the
placement stage. “Post” is using the disassembly as a post-process, where
the ray-casting and flood-fill disassembly are combined in §4.

Dataset Disass- 2mm Timing 1mm Timingembly 90◦ 90◦

pieces
No 50.48% 104.05s 51.11% 427.77s

Flood-Fill 48.14% 421.81s 49.12% 1879.54s
Post 50.45% 102.64s 50.48% 475.0s

mixtures
No 36.06% 40.51s 41.62% 178.50s

Flood-Fill 29.05% 177.54s 34.97% 838.75s
Post 34.71% 67.99s 39.77% 408.05s

locks
No 8.25% 14.50s 9.79% 62.63s

Flood-Fill 6.91% 71.47s 7.59% 346.56s
Post 6.89% 123.84s 8.67% 469.17s

5.3 Continuous Refinement
We demonstrate the efficacy of continuous refinements on three
benchmarks. The result is shown in Table 2. Using refinements
consistently improves packing density at amodest increase of timing.
At 2mm voxel resolution, enabling refinements achieves a similar
packing density as using 1mm voxel resolution, while having a
much lower computational cost. As shown in Fig. 11, continuous
refinement saves a small amount of space for each object insertion
with FFT. This accumulates and allows some objects to squeeze into
new spaces, leading to different, denser packing configurations than
without refinement.

5.4 Multi-Tray Packing
In this example, we pack all 6596meshes into a number of trays using
Algorithm 5. We limit the number of objects to pack for each tray
to 1000. We use 1mm voxel size and 90◦ angle sampling. Interlock

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:8 • Cui et al.

Fig. 6. Ray-casting disassembly. From left to right: Starting with a packed tray, we cast rays along the G direction shown with the black arrow. A DBG is
obtained, where SCCs are rendered with the same color. Then, every SCCs with only one object are disassembled from the packing, as shown in the third and
fourth figure. This broad-phase disassembly is repeated several times along different directions. The remaining SCCs are shown in the fifth figure.

Fig. 7. Our benchmark data sets. Left: meshes in the Pieces data set. Middle:
a selection of meshes from the Mixtures data set. Right: Meshes in the
Locks data set.

Fig. 8. Example packs obtained from three benchmarks. Left: A packing of
pieces.Middle: A packing of mixtures. Right: A packing of locks.

Table 2. Comparison of our packing algorithm with and without continuous
refinement. Post-processing disassembly is used for all experiments.

Dataset Continuous 2mm Timing 1mm TimingRefinement 90◦ 90◦

pieces No 48.41% 78.50s 50.45% 402.96s
Yes 50.45% 102.64s 53.32% 475.00s

mixtures No 34.19% 57.50s 36.51% 384.20s
Yes 34.71% 67.99s 39.77% 408.05s

locks No 6.86% 100.30s 8.24% 334.24s
Yes 6.89% 123.84s 8.67% 469.17s

checking and refinement are enabled as well. We show the results of
multi-tray packing in Fig. 13. The timing of this example is shown
in the third row of Table 3.
To scale up the evaluation, we pack these meshes into a single

tray with 2mm voxel size and 90◦ angle sampling.Without interlock
checking, the benchmark is packed at a density of 40.28% in a bound-
ing box of 1430mm × 730mm × 538mm. With interlock checking,
the benchmark is packed at 35.77% density with a bounding box
of 1430mm × 730mm × 597mm (see the teaser figure). Timing for
these examples is shown in Table 3 as well.

5.5 Parameter Choices
We study our algorithm with different parameter choices, especially
the height penalization coefficient. As shown in Fig. 12, when height

penalization is set to zero, the proximity metric will try to find
placements that best fit existing objects, resulting in a taller pack.
With a non-zero penalization, the placement method will prioritize
a lower height for each object. We also study the result of searching
over different numbers of orientations in §B.2. Experiments on
placement order and combinatorial strategies are also shown in
§B.3. The results of packing in irregular containers in Fig. 14, with
the implementation details in §B.4.

5.6 Comparison
Comparison with Commercial Software. We compare our algo-

rithm with commercial software Netfabb [Autodesk 2023], Fabpilot
[Sculpteo 2023], and Polydevs [UnionTech 2018] on our benchmarks.
We select the best settings from each software, which are shown in
§B.5. Table 4 shows that our algorithm achieves the highest packing
densities and runs the fastest on all three benchmarks. A visual-
ization of packing on pieces is shown in Fig. 15. Our algorithm
results in tighter margins between objects and places small objects
into gaps more efficiently. For the locks dataset, our result is both
interlocking-free and denser. No interlocking is found in the result
of Netfabb and Polydevs, but we found many interlocking instances
in the results of Fabpilot. We also provide timing for a CPU imple-
mentation of our algorithm that achieves competitive speeds despite
the lack of optimization. Compared to our GPU version, the CPU
implementation loses more performance during disassembly where
FFT and flood-fill are used extensively.

Comparison with Other Techniques. We compare our algorithm
with four prior techniques that provided datasets or source code.
PackMerger [Vanek et al. 2014] decomposes a given shape into a
small number (≤ 20) of segments and then packs them. It uses a
heightmap-based packing and a tabu search to minimize the bound-
ing box volume. We compare packing performance on decomposed
segments produced by PackMerger. We enforce the same 1mm sep-
aration between objects as in their experiment. Our packing method
improves density significantly even with a simple greedy ordering,
whereas PackMerger used a tabu search (Fig. 16). For this small-scale
problem, our algorithm remains efficient, averaging 1-2 seconds per
object. We also evaluate our algorithm on 80 polyhedra from Ex-
ample 5 of Romanova et al. [2018] (Fig. 17 left). Our algorithm is
two orders of magnitude faster at a slightly lower packing density.
We pack 77 polyhedra to compare with Ma et al. [2018] in Fig. 13 of
their paper (Fig. 17 right). Our algorithm is one order of magnitude
faster and achieves a slightly higher packing density. For this exam-
ple, we use a voxel size of 0.25 and uniformly sample Euler angles
at 30◦. Continuous refinement is enabled and the margin is set to

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Dense, Interlocking-Free and Scalable Spectral Packing of Generic 3D Objects • 1:9

Fig. 9. Left: A packing with a density 34.25% produced by our algorithm.Middle: The packed tray printed with an inkjet printer. Right The disassembled
parts.

Table 3. The packing statistics on the Thingi benchmark. The benchmark consists of 6596 meshes. The benchmark is packed in multiple trays of dimensions
480mm×245mm×200mm. †: Packing of dimensions 1430mm×730mm×597mmwith interlock checking. ‡: Packing of dimensions 1430mm×730mm×538mm
without interlock checking. All timing is in seconds.

Setting Interlock Number Packing Total Packing Disassembly Re-Insert FFT Voxelization Collision
Checking of Trays Density Time Detection

2mm/90◦ Yes 28 35.06% 1456.03s 1207.95s 90.16s 157.91s 34.64% 38.66% 7.84%
No 26 37.77% 1010.27s 1010.27s 0s 0s 32.69% 39.58% 7.71%

1mm/90◦ Yes 26 37.30% 7212.97s 5606.00s 504.99s 1101.98s 55.29% 24.25% 2.18%
No 24 40.64% 5103.02s 5103.02s 0s 0s 54.88% 23.59% 2.46%

2<</90◦ Yes 1† 35.77% 14478.80s 6595.30s 2524.58s 5358.87s 71.33% 17.35% 0.64%
No 1‡ 40.28% 6662.98s 6662.98s 0s 0s 82.20% 1.50% 1.41%

Fig. 10. Left: Locks packed without interlock checking, notice significant
number of interlocked parts as highlighted on the bottom. Right: Locks
packed with interlock checking, notice parts are free of interlocking, as
highlighted on the bottom.

zero between parts. Pack3D [Fogleman 2019] is an open source 3D
packing software. We compare with it on mixtures in §B.6.

6 CONCLUSION AND FUTURE WORK
We have introduced a scalable packing algorithm that packs thou-
sands of generic 3D objects densely and without interlocking. Our
method highlights the importance of using the objects’ detailed ge-
ometries without oversimplifying in order to identify a richer set of
placements. By using high-resolution voxelization and computing
correlations in the spectral domain, we can efficiently place each
object into a pack. This approach is extended to guarantee that the
objects can be disassembled in the context of 3D printing.

Fig. 11. Left: Pieces packed without refinements. Notice the gaps between
parts due to voxelization. Right: Pieces packed with refinements. The gaps
aremuch smaller with continuous refinements, as highlighted on the bottom.
This leads to higher packing density with very little overhead.

In this work, we only consider interlocking-free packing. In prac-
tice, many other physical constraints can be added, such as robotic
motion planning [LaValle 2006] and packing stability [Wang and
Hauser 2019]. Another interesting direction is to pack articulated or
deformable objects. Finally, a better combinatorial search algorithm
could substantially improve packing density.

ACKNOWLEDGMENTS
This work was conducted at Inkbit LLC and is part of Inkbit’s
patented and patent pending commercial 3d printing solutions. We

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:10 • Cui et al.

Fig. 12. Left: 1500 parts from Pieces packed with zero height penalization,
which has a taller total height. Right: The same set of objects packed with
height penalization ? = 108, which results in a lower total height.

Table 4. Comparison of packing densities between our algorithm and other
software packages. We use 2mm voxel size, 90◦ orientation sampling, and
post-processing disassembly for all examples. Continuous refinement is also
enabled. †: CPU timing is recorded on the same platform. ‡: Timing reported
on the cloud platform. We were unable to pack mixtures on Fabpilot due
to upload limits. We report both GPU and CPU timing of our algorithm.

Methods pieces mixtures locks

Density

Netfabb† 28.23% 25.48% 3.46%
Fabpilot‡ 35.59% - 4.56%
PolyDevs 40.87% 23.16% 3.13%
Ours 50.45% 34.71% 6.89%

Timing

Netfabb† 1810s 1560s 610s
Fabpilot‡ 684s - 241s
PolyDevs 3598s 1180s 184s
Ours (GPU) 103s 68s 124s
Ours (CPU) 313s 342s 425s

thank the anonymous reviewers for their helpful comments in re-
vising the paper.

REFERENCES
Luiz JP Araújo, Ender Özcan, Jason AD Atkin, and Martin Baumers. 2019. Analysis

of irregular three-dimensional packing problems in additive manufacturing: a new
taxonomy and dataset. International Journal of Production Research 57, 18 (2019),
5920–5934.

Richard Carl Art Jr. 1966. An approach to the two dimensional irregular cutting stock
problem. Ph. D. Dissertation. Massachusetts Institute of Technology.

Autodesk. 2023. Autodesk Netfabb. https://www.autodesk.com/products/netfabb/
Build: 47, Release: 2023.1.

Edmund K Burke, Robert SR Hellier, Graham Kendall, and Glenn Whitwell. 2007.
Complete and robust no-fit polygon generation for the irregular stock cutting
problem. European Journal of Operational Research 179, 1 (2007), 27–49.

Elizabeth R Chen, Michael Engel, and Sharon C Glotzer. 2010. Dense crystalline dimer
packings of regular tetrahedra. Discrete & Computational Geometry 44, 2 (2010),
253–280.

Rulin Chen, Ziqi Wang, Peng Song, and Bernd Bickel. 2022. Computational design of
high-level interlocking puzzles. ACM Trans. Graph. 41, 4 (2022), 1–15.

Xuelin Chen, Hao Zhang, Jinjie Lin, Ruizhen Hu, Lin Lu, Qi-Xing Huang, Bedrich Benes,
Daniel Cohen-Or, and Baoquan Chen. 2015. Dapper: decompose-and-pack for 3d
printing. ACM Trans. Graph. 34, 6 (2015), 213–1.

Nikolai Chernov, Yuriy Stoyan, and Tatiana Romanova. 2010. Mathematical model
and efficient algorithms for object packing problem. Computational Geometry 43, 5
(2010), 535–553.

Erwin Coumans and Yunfei Bai. 2016–2021. PyBullet, a Python module for physics
simulation for games, robotics and machine learning. http://pybullet.org.

Jens Egeblad, Claudio Garavelli, Stefano Lisi, and David Pisinger. 2010. Heuristics for
container loading of furniture. European Journal of Operational Research 200, 3
(2010), 881–892.

Christer Ericson. 2004. Real-time collision detection. Crc Press.
Filippo Andrea Fanni, Fabio Pellacini, Riccardo Scateni, and Andrea Giachetti. 2022.

PAVEL: Decorative Patterns with Packed Volumetric Elements. ACM Transactions

on Graphics (TOG) 41, 2 (2022), 1–15.
Michael Fogleman. 2019. Pack3d. https://github.com/fogleman/pack3d
Michael Garland and Paul S Heckbert. 1997. Surface simplification using quadric

error metrics. In Proceedings of the 24th annual conference on Computer graphics and
interactive techniques. 209–216.

Michael Goldwasser, J-C Latombe, and Rajeev Motwani. 1996. Complexity measures
for assembly sequences. In Proceedings of IEEE International Conference on Robotics
and Automation, Vol. 2. IEEE, 1851–1857.

Ankit Goyal and Jia Deng. 2020. PackIt: A Virtual Environment for Geometric Planning.
In International Conference on Machine Learning.

Si Hang. 2015. TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM
Trans. Math. Softw 41, 2 (2015), 11.

Ruizhen Hu, Juzhan Xu, Bin Chen, Minglun Gong, Hao Zhang, and Hui Huang. 2020.
TAP-Net: transport-and-pack using reinforcement learning. ACM Trans. Graph. 39,
6 (2020), 1–15.

Alec Jacobson, Daniele Panozzo, et al. 2018. libigl: A simple C++ geometry processing
library. https://libigl.github.io/.

David S Johnson. 1973. Near-optimal bin packing algorithms. Ph. D. Dissertation.
Massachusetts Institute of Technology.

Ephraim Katchalski-Katzir, Isaac Shariv, Miriam Eisenstein, Asher A Friesem, Claude
Aflalo, and Ilya A Vakser. 1992. Molecular surface recognition: determination of
geometric fit between proteins and their ligands by correlation techniques. Proc
Natl Acad of Sci 89, 6, 2195–2199.

Carlos Lamas-Fernandez, Julia A Bennell, and Antonio Martinez-Sykora. 2022. Voxel-
Based Solution Approaches to the Three-Dimensional Irregular Packing Problem.
Operations Research (2022).

Lei Lan, Danny M Kaufman, Minchen Li, Chenfanfu Jiang, and Yin Yang. 2022. Affine
body dynamics: Fast, stable & intersection-free simulation of stiff materials. arXiv
preprint arXiv:2201.10022 (2022).

Steven M LaValle. 2006. Planning algorithms. Cambridge university press.
Aline AS Leao, Franklina MB Toledo, José Fernando Oliveira, Maria Antónia Car-

ravilla, and Ramón Alvarez-Valdés. 2020. Irregular packing problems: A review
of mathematical models. European Journal of Operational Research 282, 3 (2020),
803–822.

Xiao Liu, Jia-min Liu, An-xi Cao, and Zhuang-le Yao. 2015. HAPE3D—a new constructive
algorithm for the 3D irregular packing problem. Frontiers of Information Technology
& Electronic Engineering 16, 5 (2015), 380–390.

Yuexin Ma, Zhonggui Chen, Wenchao Hu, and Wenping Wang. 2018. Packing irregular
objects in 3D space via hybrid optimization. Comp. Graph. Forum (SGP) 37, 5 (2018),
49–59.

Silvano Martello, David Pisinger, and Daniele Vigo. 2000. The three-dimensional bin
packing problem. Operations research 48, 2 (2000), 256–267.

NVIDIA. 2022a. CUDA, release: 12.0. https://developer.nvidia.com/cuda-toolkit
NVIDIA. 2022b. CUDA, release: 12.0. https://developer.nvidia.com/cufft
Dzmitry Padhorny, Andrey Kazennov, Brandon S Zerbe, Kathryn A Porter, Bing Xia,

Scott E Mottarella, Yaroslav Kholodov, David W Ritchie, Sandor Vajda, and Dima
Kozakov. 2016. Protein–protein docking by fast generalized Fourier transforms on
5D rotational manifolds. Proc Natl Acad Sci 113, 30, E4286–E4293.

Alexander Pankratov, Tatiana Romanova, and Igor Litvinchev. 2020. Packing oblique
3D objects. Mathematics 8, 7 (2020), 1130.

Bernhard Reinert, Tobias Ritschel, and Hans-Peter Seidel. 2013. Interactive by-example
design of artistic packing layouts. ACM Transactions on Graphics (TOG) 32, 6 (2013),
1–7.

David W Ritchie and Graham JL Kemp. 2000. Protein docking using spherical polar
Fourier correlations. Proteins: Structure, Function, and Bioinformatics 39, 2 (2000),
178–194.

David W Ritchie and Vishwesh Venkatraman. 2010. Ultra-fast FFT protein docking on
graphics processors. Bioinformatics 26, 19 (2010), 2398–2405.

Tatiana Romanova, Julia Bennell, Yuriy Stoyan, and Aleksandr Pankratov. 2018. Pack-
ing of concave polyhedra with continuous rotations using nonlinear optimisation.
European Journal of Operational Research 268, 1 (2018), 37–53.

Michael Schwarz and Hans-Peter Seidel. 2010. Fast parallel surface and solid voxeliza-
tion on GPUs. ACM transactions on graphics (TOG) 29, 6 (2010), 1–10.

Sculpteo. 2023. Sculpteo Fabpilot. https://www.fabpilot.com/.
Pitchaya Sitthi-Amorn, Javier E Ramos, Yuwang Wangy, Joyce Kwan, Justin Lan, Wen-

shou Wang, and Wojciech Matusik. 2015. MultiFab: a machine vision assisted
platform for multi-material 3D printing. Acm Transactions on Graphics (Tog) 34, 4
(2015), 1–11.

Peng Song, Chi-Wing Fu, and Daniel Cohen-Or. 2012. Recursive interlocking puzzles.
ACM Trans. Graph. 31, 6 (2012), 1–10.

Yuriy Stoyan, Aleksandr Pankratov, and Tatiana Romanova. 2016. Quasi-phi-functions
and optimal packing of ellipses. Journal of Global Optimization 65, 2 (2016), 283–307.

Yunsheng Tian, Jie Xu, Yichen Li, Jieliang Luo, Shinjiro Sueda, Hui Li, Karl DD Willis,
and Wojciech Matusik. 2022. Assemble Them All: Physics-Based Planning for
Generalizable Assembly by Disassembly. ACM Transactions on Graphics (TOG) 41, 6
(2022), 1–11.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

https://www.autodesk.com/products/netfabb/
http://pybullet.org
https://github.com/fogleman/pack3d
https://developer.nvidia.com/cuda-toolkit
https://developer.nvidia.com/cufft

Dense, Interlocking-Free and Scalable Spectral Packing of Generic 3D Objects • 1:11

Fig. 13. We packed 6596 objects from the Thingi10K benchmark into 26 trays.

Fig. 14. We packed the mixtures benchmark into SIGGRAPH letters.

Fig. 15. Comparison between our algorithm and commercial software on
pieces. Left: Netfabb. Middle: Fabpilot. Right: Our algorithm. The bottom
row shows in-focus views of the result. Both Netfabb and Fabpilot produce
wide gaps between objects as highlighted with red dashed line. Also notice
our algorithm is able to fill void space more efficiently as shown in the black
square.

UnionTech. 2018. Polydevs. https://polydevs3d.com/ Version 2.2.5.33.
Juraj Vanek, JA Garcia Galicia, Bedrich Benes, R Měch, N Carr, Ondrej Stava, and GS

Miller. 2014. Packmerger: A 3d print volume optimizer. In Computer Graphics Forum,
Vol. 33. Wiley Online Library, 322–332.

Fan Wang and Kris Hauser. 2019. Stable bin packing of non-convex 3D objects with
a robot manipulator. In 2019 International Conference on Robotics and Automation
(ICRA). IEEE, 8698–8704.

ZiqiWang, Peng Song, andMark Pauly. 2018. DESIA: A general framework for designing
interlocking assemblies. ACM Transactions on Graphics (TOG) 37, 6 (2018), 1–14.

Ziqi Wang, Peng Song, and Mark Pauly. 2021. State of the Art on Computational Design
of Assemblies with Rigid Parts. Eurographics 2021 STAR 40 (2021).

Randall H Wilson and Jean-Claude Latombe. 1994. Geometric reasoning about mechan-
ical assembly. Artificial Intelligence 71, 2 (1994), 371–396.

Zifei Yang, Shuo Yang, Shuai Song, Wei Zhang, Ran Song, Jiyu Cheng, and Yibin Li.
2021. PackerBot: Variable-Sized Product Packing with Heuristic Deep Reinforcement
Learning. In 2021 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). IEEE, 5002–5008.

Miaojun Yao, Zhili Chen, Linjie Luo, Rui Wang, and Huamin Wang. 2015. Level-set-
based partitioning and packing optimization of a printable model. ACM Transactions
on Graphics (TOG) 34, 6 (2015), 1–11.

Cha Zhang and Tsuhan Chen. 2001. Efficient feature extraction for 2D/3D objects in
mesh representation. In Proceedings 2001 International Conference on Image Processing
(Cat. No. 01CH37205), Vol. 3. IEEE, 935–938.

Xinya Zhang, Robert Belfer, Paul G Kry, and Etienne Vouga. 2020. C-Space tunnel
discovery for puzzle path planning. ACM Transactions on Graphics (TOG) 39, 4
(2020), 104–1.

Hongkai Zhao. 2005. A fast sweeping method for eikonal equations. Mathematics of
computation 74, 250 (2005), 603–627.

Hang Zhao, Qijin She, Chenyang Zhu, Yin Yang, and Kai Xu. 2021. Online 3D bin
packing with constrained deep reinforcement learning. In Proceedings of the AAAI
Conference on Artificial Intelligence, Vol. 35. 741–749.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

https://polydevs3d.com/

1:12 • Cui et al.

Fig. 16. Our packed examples corresponding to Figures 1 and 11 of [Vanek
et al. 2014]. Left: We pack 13 bunny parts into a bounding box of volume
2.90 × 105 mm3, a 27.8% improvement over Vanek et al. [2014]’s result of
4.01 × 105 mm3. This packing takes 19.2s. Right: We pack 12 molecule parts
into a bounding box of volume 2.09 × 105 mm3, a 43.0% improvement over
Vanek et al. [2014]’s result of 3.67 × 105 mm3. This packing takes 27.4s.

Fig. 17. Our packing of Example 5 in [Romanova et al. 2018]. Left: We pack
80 polyhedrons inside a cube of size 36.98 × 41.98 × 56.37, with a packing
density of 51.27%, and 329s. Romanova et al. [2018] achieved a packing
density of 53.66% with 42950s. Right: We pack 77 polyhedrons inside a cube
of size 36.98 × 40.98 × 56.55, with a packing density of 51.53%, and 335s.
Ma et al. [2018] achieved a packing density of 51.3% with 2700s.

Qingnan Zhou and Alec Jacobson. 2016. Thingi10k: A dataset of 10,000 3d-printing
models. arXiv preprint arXiv:1605.04797 (2016).

A PACKING ALGORITHM IMPLEMENTATION
In this section, we present further details about the packing algo-
rithm’s implementation.

A.1 Metrics Computation and Discussion
We use a fixed grid to store the indicator function BΩ . Instead of
re-voxelizing the entire grid for every object placement, we update
BΩ with the object voxelization B� , should it be placed into the tray
successfully. To compute the proximity metric, we allocate another
grid and initialize it with∞, then mark every voxel where BΩ = 1
with 0. Based on this grid, we compute qΩ using the Fast Sweeping
Method [Zhao 2005]. We compute the Manhattan distance instead
of the Euclidean distance, and find it to be both faster and easier
to implement on GPUs, while yielding reasonable results. We use
circular convolutions to calculate both metrics. This allows us to
use fixed voxel grids and FFT plans [NVIDIA 2022b] that can be

pre-allocated with the size of tray dimension l divided by voxel
resolution 3G . In contrast, computing zero-padded convolutions will
require padding the voxel grid of BΩ with the size of voxel grid B� .
This requires reallocating the voxel grid as well as resizing FFT plans
for every object orientation, which can incur significant overhead.
(Note that computing zero-padded convolution becomes necessary
with flood-fill disassembly, which is discussed in §4.1.) We then
discard any voxel location that the object clips out of the tray.
Katchalski-Katzir et al. [1992] combined collision detection and

proximity search into a single metric, which is achieved by setting a
penalty term on qΩ (x) where BΩ (x) = 1. With a small penalization
term, overlaps between objects can still occur. With a very large
penalization term, the sharp transition of qΩ at the boundary of Ω
introduces ringing artifacts on the results of FFT due to numerical
precision limits. In contrast, we compute collision metric and prox-
imity metric separately and avoid using penalty terms for collision.
This improves the numerical accuracy because the input to FFT is
smoother.

A.2 Choosing Height Penalization
We use a simple heuristic to determine the penalization coefficient
? by estimating how likely the tray will be fully filled. We add up
the volume of bounding boxes of all objects that need to be packed,
and divide the result by the volume of the tray. If the ratio is larger
than 1.2, the tray is likely to be fully filled, and so we use a small
penalization ? = 4. Otherwise, we use a large penalization ? = 108

to minimize the total height.

A.3 Greedy and Multi-Tray Packing
We extend our algorithm to multi-tray packing with a simple greedy
approach. Given a large list of objects and assuming each of them
can fit into a tray, we select a number of objects to attempt for each
tray and pack them with Algorithm 2. Then, we remove the objects
that are successfully packed from the list, and proceed to the next
empty tray. This process is repeated until all objects are packed, as
described in Algorithm 5.

B ADDITIONAL RESULTS
In this section we present additional results and clarifications of
experiments in the main paper.

B.1 Benchmark Generation
To generate our benchmark, we extract meshes from Thingi10K
dataset that are both manifold and consistently-oriented. We com-
pute the mesh volume with the signed volume [Zhang and Chen
2001] and prune any meshes with a negative volume. Note that
some of the meshes we retain have multiple components which
can intersect and so the signed volumes in such cases may not be
completely accurate. The packing density is computed by adding up
the signed volume of all meshes contained in the tray and dividing
that by the volume of the bounding box. We use quadratic mesh
simplification [Garland and Heckbert 1997] on the extracted meshes
to reduce the data size without any impact on the packing. Then, we
uniformly scale down any meshes that have a bounding box larger
than 480× 245× 200, and scale up any meshes that are smaller than

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

Dense, Interlocking-Free and Scalable Spectral Packing of Generic 3D Objects • 1:13

Algorithm 5 Greedy Multi-Tray Packing

1: function MultiTrayPacking(A, =,<, l, 3G)
2: Input: A large list of objects A, maximum number of objects

to attempt for each tray =, the number of orientations to search
<, tray dimension l, voxel resolution 3G

3: Output: A list of packed trays P, a list of translations Q, a
list of rotations R

4: P← ∅,Q← ∅,R← ∅
5: while A ≠ ∅ do
6: A← Select(A, =) ⊲ Select most = objects to attempt
7: {P,Q,R,U} ← GreedyPackObjects(A,<, l, 3G)
8: A.remove(P)
9: P.add(P)
10: Q.add(Q)
11: R.add(R)
12: end while
13: Return {P,Q,R};
14: end function

2×2×2. This results in a benchmark containing 6596 meshes, which
consists of many diverse and challenging geometries.

B.2 Placement Orientation Search
Sampling more orientations allows for more options per object and
a better local optimum. It is reasonable to assume this would lead
to better overall packing density. As shown in Table 5, sampling
Euler angles at 30◦ and 45◦ results in a moderate increase in packing
density in the mixtures and locks dataset. However, this is not
always the case. As shown in Table 5, packing pieces by searching
over 30◦ produces a worse result than searching over 90◦. This is
because most objects in pieces are axis aligned. Even though a
search over 30◦ may result in a better solution for a partial tray
packing than searching over 90◦, it may cause subsequent objects
to be misaligned, resulting in a worse final packing. This counter-
intuitive result is visualized in Fig. 18.

Table 5. Comparisons of packing density and timing on three datasets with
different number of orientation sampling. A voxel size of 2mm and post-
processing disassembly are used for all the following experiments.

Dataset Angle pieces mixtures locksSample

Density
90◦ 50.48% 34.71% 6.89%
45◦ 50.02% 35.27% 7.88%
30◦ 45.39% 35.27% 7.57%

Timing
90◦ 104.05s 67.99s 123.84s
45◦ 603.28s 315.97s 226.19s
30◦ 2099.65s 1052.08s 429.57s

B.3 Placement Order and Combinatorial Search
As our algorithm is greedy, the order of objects selected for place-
ments will affect the results. We compare different selection strategy
with the benchmark mixture. As shown in Fig. 19, selecting objects

Fig. 18. Left: Pieces packed by evenly searching 30◦ over Euler angles. It
produces a sub-optimal result with a density of 44.91%. Notice misaligned
parts as highlighted. Right: The same dataset packed by only searching
90◦. This results in a better density of 50.81% where parts are axis aligned.

at random produces sub-optimal results compared to selecting ob-
jects from largest to smallest. We also show a result of beam search
over placement ordering with a beam width of 5. While the packing
density is slightly higher, it is 4× slower.

Fig. 19. Left: Placing parts in random order produces sub-optimal result
with a density of 29.9% Middle: Placing parts from largest to smallest
produces a better packing density of 34.71% with the same computational
cost. Right: Beam search results in a packing density of 35.06%, but spends
4× more time.

B.4 Packing in Irregular Containers
Our algorithm can be easily extended to packing in irregular con-
tainers. In this case, the geometry of the container is voxelized to
initialize the grid for the placement computation. In the example,
we pack the mixtures benchmark into SIGGRAPH letters. We use
a fixed tray size of 322mm × 322mm × 80mm and a voxel size of
1mm for all the letters. Interlock checking is disabled and only one
orientation is attempted. Packing each letter takes on average 12.73
seconds.

B.5 Comparison Settings
We clarify the settings used for the comparison with commercial
software. For Netfabb [Autodesk 2023], we choose size sorting 3D
packing, which is its best-performing setting on our benchmark.The
algorithm is a 3-phase packing algorithm. In the first two phases the
algorithm packs large and medium-sized objects with its built-in
Monte Carlo packer. In the final phase, the algorithm uses the scan-
line packer to pack small objects. We use highest-density/highest-
quality settings for all three phases, and 1mm voxel size (the highest
quality setting) for the third phase. We also enable avoiding inter-
locking option in Netfabb. For Fabpilot [Sculpteo 2023], area averag-
ing packing is disabled to produce the best overall results. However,
there is no interlock detection feature. For Polydevs [UnionTech
2018], we use high accuracy setting with 1mm (lowest) part inter-
val and 30◦ orientations for both mixture and locks dataset. For

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

1:14 • Cui et al.

pieces, we use low accuracy setting with 90◦ orientations to avoid
excessive run-time.
We set the same build volume (480mm × 245mm × 200mm),

select the same objects and the number of copies for each object
to pack. After packing, we remove any objects that are outside of
the build volume and compute the packing density. We run Netfabb
and Polydevs on the same platform as ours and record the timing,
though they both only use CPU for packing. Fabpilot is cloud-based
and we are unable to determine the hardware platform. We report
the timing when it converged.

B.6 Additional Comparisons
We used Fabpilot to pack a set of ring-like objects. As shown in
Fig. 20, the result contains many interlocked assemblies. We pre-
pared the same set of objects with our algorithm and printed on
an inkjet deposition 3D printer (Fig. 21). The parts are successfully
disassembled without interlocking.

Fig. 20. A packing produced by Fabpilot with multiple interlocking assem-
blies highlighted in the red box and the black box.

We also compare our algorithm with an open source 3d pack-
ing software pack3D [Fogleman 2019] which uses a simulated-
annealing-based approach. It first produces a collision-free initial
configuration by spreading out all the objects. Then it locally opti-
mizes one object at a time by updating its position and orientation,
in order to minimize the volume of the bounding box. The software
uses bounding volume hierarchies (BVH) to detect collisions be-
tween objects, and is able to achieve reasonable results for a small
number of objects. We compare our algorithm with pack3d by pack-
ing 48 ring-like objects. The results are in Fig. 22. Our algorithm is
able to achieve higher packing density with less time. Furthermore,
as pack3d only optimizes one object at a time, it is not scalable to a
large set of objects. As shown in Fig. 23, it fails to converge while
packing the mixtures benchmark.

Fig. 21. Top left: The same set of objects in Fig. 20 are packed with our
algorithm with no interlocking. Top right: The printed tray containing the
set of objects on the left. Bottom: The disassembled printed objects.

Fig. 22. The packing of 48 distorted tori with our algorithm and pack3d. Left:
The result of pack3d. While there is no interlocking, the packing density is
3.96% with bounding box size 156.49mm × 339.11mm × 220.49mm. This
example takes 1200s. Right: The result of our algorithm, which is both
interlocking-free and with a higher packing density of 5.82%. Our result
takes 32s, with bounding box size 239.98mm × 239.98mm × 138.13mm.

Fig. 23. Left: The packing result of mixture with pack3d, where it fails to
converge with a packing density of 3.47% after 1200s. Right: Our algorithm
achieves a packing density of 34.71% in only 67.99s.

ACM Trans. Graph., Vol. 42, No. 4, Article 1. Publication date: August 2023.

	Abstract
	1 Introduction
	2 Related Work
	3 Scalable Spectral Packing
	3.1 Discrete Placement Search with FFT
	3.2 Continuous Placement Refinements
	3.3 Packing Objects Greedily

	4 Interlocking-free Packing with Disassembly
	4.1 Flood-Fill Disassembly
	4.2 Flood-Fill Disassembly with Refinements
	4.3 Interlocking-Free Placement
	4.4 Ray-Casting Disassembly

	5 Results
	5.1 Benchmark
	5.2 Different Strategies to Avoid Interlocking
	5.3 Continuous Refinement
	5.4 Multi-Tray Packing
	5.5 Parameter Choices
	5.6 Comparison

	6 Conclusion And Future Work
	Acknowledgments
	References
	A Packing Algorithm Implementation
	A.1 Metrics Computation and Discussion
	A.2 Choosing Height Penalization
	A.3 Greedy and Multi-Tray Packing

	B Additional Results
	B.1 Benchmark Generation
	B.2 Placement Orientation Search
	B.3 Placement Order and Combinatorial Search
	B.4 Packing in Irregular Containers
	B.5 Comparison Settings
	B.6 Additional Comparisons

